Problem 1.19

Draw a circle in the $x y$ plane. At a few representative points draw the unit vector \mathbf{v} tangent to the circle, pointing in the clockwise direction. By comparing adjacent vectors, determine the signs of $\partial v_{x} / \partial y$ and $\partial v_{y} / \partial x$. According to Eq. 1.41 then, what is the direction of $\nabla \times \mathbf{v}$?

Solution

In Cartesian coordinates the curl of $\mathbf{v}=v_{x} \hat{\mathbf{x}}+v_{y} \hat{\mathbf{y}}+v_{z} \hat{\mathbf{z}}$ is

$$
\begin{align*}
\nabla \times \mathbf{v} & =\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right| \\
& =\hat{\mathbf{x}}\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right)+\hat{\mathbf{y}}\left(\frac{\partial v_{x}}{\partial z}-\frac{\partial v_{z}}{\partial x}\right)+\hat{\mathbf{z}}\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right) . \tag{1.41}
\end{align*}
$$

The curl is only nonzero if the components of \mathbf{v} change in space. For instance, consider the circle shown below in the $x y$-plane and a vector \mathbf{v} acting on it tangentially in the clockwise direction.

Since \mathbf{v} lies in and changes in the $x y$-plane only, the z-derivatives are zero and $v_{z}=0$.

$$
\nabla \times \mathbf{v}=\hat{\mathbf{x}}(0)+\hat{\mathbf{y}}(0)+\hat{\mathbf{z}}\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right)
$$

Notice that the x-component of \mathbf{v} is negative in the bottom half of the circle and becomes positive in the top half. $\partial v_{x} / \partial y$, which represents the change in v_{x} as y increases, is positive then. Also, the y-component of \mathbf{v} is positive in the left half and becomes negative in the right half. $\partial v_{y} / \partial x$, which represents the change in v_{y} as x increases, is negative then. Therefore, the curl of \mathbf{v} points in the negative z-direction (into the paper).

If the tangent vectors pointed in the counterclockwise direction instead, then the curl of \mathbf{v} would point in the positive z-direction (out of the paper). These results could have been predicted with the right-hand corkscrew rule: curl the four fingers in the direction of \mathbf{v}, and the thumb points in the direction of $\nabla \times \mathbf{v}$.

